skip to main content


Search for: All records

Creators/Authors contains: "Kraiczy, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Borrelia miyamotoi , a relapsing fever spirochete transmitted by Ixodid ticks causes B. miyamotoi disease (BMD). To evade the human host´s immune response, relapsing fever borreliae, including B. miyamotoi , produce distinct variable major proteins. Here, we investigated Vsp1, Vlp15/16, and Vlp18 all of which are currently being evaluated as antigens for the serodiagnosis of BMD. Comparative analyses identified Vlp15/16 but not Vsp1 and Vlp18 as a plasminogen-interacting protein of B. miyamotoi . Furthermore, Vlp15/16 bound plasminogen in a dose-dependent fashion with high affinity. Binding of plasminogen to Vlp15/16 was significantly inhibited by the lysine analog tranexamic acid suggesting that the protein–protein interaction is mediated by lysine residues. By contrast, ionic strength did not have an effect on binding of plasminogen to Vlp15/16. Of relevance, plasminogen bound to the borrelial protein cleaved the chromogenic substrate S-2251 upon conversion by urokinase-type plasminogen activator (uPa), demonstrating it retained its physiological activity. Interestingly, further analyses revealed a complement inhibitory activity of Vlp15/16 and Vlp18 on the alternative pathway by a Factor H-independent mechanism. More importantly, both borrelial proteins protect serum sensitive Borrelia garinii cells from complement-mediated lysis suggesting multiple roles of these two variable major proteins in immune evasion of B. miyamotoi . 
    more » « less
  2. Rudi, Knut (Ed.)
    ABSTRACT Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere, caused by spirochetes belonging to the Borrelia burgdorferi sensu lato species complex, which are transmitted by ixodid ticks. B. burgdorferi sensu lato species produce a family of proteins on the linear plasmid 54 (PFam54), some of which confer the functions of cell adhesion and inactivation of complement, the first line of host defense. However, the impact of PFam54 in promoting B. burgdorferi sensu lato pathogenesis remains unclear because of the hurdles to simultaneously knock out all PFam54 proteins in a spirochete. Here, we describe two Borrelia bavariensis strains, PBN and PNi, isolated from patients naturally lacking PFam54 but maintaining the rest of the genome with greater than 95% identity to the reference B. bavariensis strain, PBi. We found that PBN and PNi less efficiently survive in human serum than PBi. Such defects were restored by introducing two B. bavariensis PFam54 recombinant proteins, BGA66 and BGA71, confirming the role of these proteins in providing complement evasion of B. bavariensis . Further, we found that all three strains remain detectable in various murine tissues 21 days post-subcutaneous infection, supporting the nonessential role of B. bavariensis PFam54 in promoting spirochete persistence. This study identified and utilized isolates deficient in PFam54 to associate the defects with the absence of these proteins, building the foundation to further study the role of each PFam54 protein in contributing to B. burgdorferi sensu lato pathogenesis. IMPORTANCE To establish infections, Lyme borreliae utilize various means to overcome the host’s immune system. Proteins encoded by the PFam54 gene array play a role in spirochete survival in vitro and in vivo . Moreover, this gene array has been described in all currently available Lyme borreliae genomes. By investigating the first two Borrelia bavariensis isolates naturally lacking the entire PFam54 gene array, we showed that both patient isolates display an increased susceptibility to human serum, which can be rescued in the presence of two PFam54 recombinant proteins. However, both isolates remain infectious to mice after intradermal inoculation, suggesting the nonessential role of PFam54 during the long-term, but may differ slightly in the colonization of specific tissues. Furthermore, these isolates show high genomic similarity to type strain PBi (>95%) and could be used in future studies investigating the role of each PFam54 protein in Lyme borreliosis pathogenesis. 
    more » « less
  3. Skare, Jon T. (Ed.)
    Pathogens possess the ability to adapt and survive in some host species but not in others–an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi , B . afzelii , and B . garinii , vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations. 
    more » « less
  4. ABSTRACT The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine. 
    more » « less